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What is theory for?

To answer why?

There are two sorts of answer in the context of neuroscience.

Constructive or mechanistic – why is the sky blue?
I provides a mechanistic understanding of observations
I links structure to function
I helps to codify, organise and relate experimental findings

Normative or teleological – why do we see light between 390 to 700 nm?
I provides an understanding of the purpose of function
I only sensible in the context of evolutionary selection



What is theory for?

To answer why?

There are two sorts of answer in the context of neuroscience.

Constructive or mechanistic – why is the sky blue?
I provides a mechanistic understanding of observations
I links structure to function
I helps to codify, organise and relate experimental findings

Normative or teleological – why do we see light between 390 to 700 nm?
I provides an understanding of the purpose of function
I only sensible in the context of evolutionary selection



What is theory for?

To answer why?

There are two sorts of answer in the context of neuroscience.

Constructive or mechanistic – why is the sky blue?
I provides a mechanistic understanding of observations
I links structure to function
I helps to codify, organise and relate experimental findings

Normative or teleological – why do we see light between 390 to 700 nm?
I provides an understanding of the purpose of function
I only sensible in the context of evolutionary selection



What is theory for?

To answer why?

There are two sorts of answer in the context of neuroscience.

Constructive or mechanistic – why is the sky blue?
I provides a mechanistic understanding of observations
I links structure to function
I helps to codify, organise and relate experimental findings

Normative or teleological – why do we see light between 390 to 700 nm?
I provides an understanding of the purpose of function
I only sensible in the context of evolutionary selection



Sensation and Perception

Two dominant ways of thinking about sensory systems and perception.

Signal processing – falls between normative and mechanistic
I a succession of filtering and feature-extraction stages that arrives at a ’detection’ or

’recognition’ output.
I dominated by feed-forward metaphors

I temporal processing often limited to integration
I some theories may incorporate local recurrence and also feedback for feature

selection or attention
I behavioural and neural theory is dominated by information-like quantities

Inference – strongly normative
I parse sensory input to work out the configuration of the world
I fundamental roles for lateral interaction, feedback and dynamical state
I behavioural theory is well understood and powerful; neural underpinnings are little

understood.



Signal-processing paradigms

1 filtering
2 (efficient) coding
3 feature detection
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The eye and retina



Centre-surround receptive fields



Centre-surround models

Centre-surround receptive fields are commonly described by one of two equations, giving the
scaled response to a point of light shone at the retinal location (x , y).
A difference-of-Gaussians (DoG) model:
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Centre-surround models

. . . or a Laplacian-of-Gaussian (LoG) model:

DLoG(x , y) = −∇2
[

1
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Linear receptive fields

The linear-like response apparent in the prototypical experiments can be generalised to give
a predicted firing rate in response to an arbitrary stimulus s(x , y):

r(cx , cy ; s(x , y)) =

∫
dx dy Dcx ,cy (x , y)s(x , y)

The receptive field centres (cx , cy ) are distributed over visual space.

If we let D() represent the RF function centred at 0, instead of at (cx , cy ), we can write:

r(cx , cy ; s(x , y)) =

∫
dx dy D(cx − x , cy − y)s(x , y)

which looks like a convolution.



Transfer functions

Thus a repeated linear receptive field acts like a spatial filter, and can be characterised by its
frequency-domain transfer function. (Indeed, much early visual processing is studied in terms
of linear systems theory.)

Transfer functions for both DoG and LoG centre-surround models are bandpass. Taking 1D
versions:
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This accentuates mid-range spatial frequencies.



Transfer functions



Edge detection

Bandpass filters emphasise edges:

orginal image DoG responses thresholded



Orientation selectivity



Linear receptive fields – simple cells

Linear response encoding:

r(t0, s(x , y , t)) =

∫ ∞
0

dτ
∫

dx dy s(x , y , t0 − τ)D(x , y , τ)

For separable receptive fields:

D(x , y , τ) = Ds(x , y)Dt (τ)

For simple cells:

Ds = exp
(
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Linear response functions – simple cells



Simple cell orientation selectivity



2D Fourier Transforms

Again, the best way to look at a filter is in the frequency domain, but now we need a 2D
transform.
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Easy to read spatial frequency tuning, bandwidth; orientation tuning and (for homework)
bandwidth.



Drifting gratings

s(x , y , t) = G + A cos(kx − ωt − φ)



Separable and inseparable response functions

Separable: motion sensitive;
not direction sensitive

Inseparable: motion sensitive;
and direction sensitive



Complex cells

Complex cells are sensitive to orientation, but, supposedly, not phase.

One model might be (neglecting time)

r(s(x , y)) =

[∫
dx dy s(x , y) exp
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But many cells do have some residual phase sensitivity. Quantified by (f1/f0 ratio).

Stimulus-response functions (and constructive models) for complex cells are still a matter of
debate.



Other V1 responses: surround effects



Other V1 responses

I end-stopping (hypercomplex)
I blobs and colour
I . . .



Signal-processing paradigms

1 filtering
2 (efficient) coding
3 feature detection



Information

What does a neural response tell us about a stimulus?

Shannon theory:
I Entropy: bits needed to specify an exact stimulus.
I Conditional entropy: bits needed to specify the exact stimulus after we see the response.
I (Average mutual) information: the difference (infomation gained from the response)

I Mutual information is bounded by the entropy of the response⇒ maximum entropy
encoding and decorrelation.

Discrimination theory:
I How accurately (squared-error) can the stimulus be estimated from the response.
I Cramér-Rao bound relates this to the Fisher Information – a differential measure of how

much the response distribution changes with the stimulus.
I Fisher information can often be optimised directly.

Linked by rate-distortion theory and by aymptotic (large population) arguments.



Entropy maximisation

I[S̃; R] = H[R]︸ ︷︷ ︸
marginal entropy

− H
[
R|S̃

]
︸ ︷︷ ︸

noise entropy

If noise is small and “constant”⇒ maximise marginal entropy⇒ maximise H
[
S̃
]

Consider a (rate coding) neuron with r ∈ [0, rmax].

h(r) = −
∫ rmax

0
dr p(r) log p(r)

To maximise the marginal entropy, we add a Lagrange multiplier (µ) to enforce normalisation
and then differentiate

δ

δp(r)

[
h(r)− µ

∫ rmax

0
p(r)

]
=

{
− log p(r)− 1− µ r ∈ [0, rmax]

0 otherwise

⇒ p(r) = const for r ∈ [0, rmax]
i.e.

p(r) =

{ 1
rmax

r ∈ [0, rmax]

0 otherwise
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Histogram Equalisation
Suppose r = s̃ + η where η represents a (relatively small) source of noise. Consider
deterministic encoding s̃ = f (s). How do we ensure that p(r) = 1/rmax?

1
rmax

= p(r) ≈ p(s̃) =
p(s)

f ′(s)
⇒ f ′(s) = rmax p(s)

⇒ f (s) = rmax

∫ s

−∞
ds′ p(s′)

s̃
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Histogram Equalisation

Laughlin (1981)



Decorrelation at the retina
Atick and Redlich (1992) argued that the retina decorrelates natural spatial statistics.

RGCs exhibit roughly linear (centre-surround) processing:

ra − 〈ra〉 =

∫
dx Ds(x− a)︸ ︷︷ ︸

filter

s(x)︸︷︷︸
stimulus

Therefore the correlation (covariance) between cells is

Qr (a, b) =

〈∫
dx dy Ds(x− a)Ds(y− b)s(x)s(y)

〉
=

∫
dx dy Ds(x− a)Ds(y− b) 〈s(x)s(y)〉︸ ︷︷ ︸

Qs(x,y)

Using (spatial) stationarity, we can transform to the Fourier domain:

Q̃r (k) = |D̃s(k)|2Q̃s(k)

and thus output decorrelation requires

|D̃s(k)|2 ∝ 1

Q̃s(k)
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Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.
Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη

ŝ −−−−−→
Ds

r

with

D̃η(k) =
Q̃s(k)

Q̃s(k) + Q̃η(k)
(Wiener filter)

Thus the combined RGC filter is predicted to be:

|D̃s(k)|D̃η(k) ∝

√
Q̃s(k)

Q̃s(k) + Q̃η(k)



Decorrelation at the retina
Spatial correlations of natural images fall off with f−2:

Q̃s(k) ∝ 1
|k|2 + k2

0

and the optical filter of the eye introduces (crudely) a low-pass term ∝ e−α|k|.
So decorrelation requires

|D̃s(k)|2 ∝ |k|
2 + k2

0

e−α|k|

But: not all input is signal.

Photodetection introduces noise. Therefore, cascade linear filters:

s + η −−−−−→
Dη
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Tuning curves

We often consider the way that the firing rate of a cell r represents a single (possibly
multidimensional) stimulus value s:

r = f (s).

Even if s and r are embedded in time-series we assume:

1. that coding is instantaneous (with a fixed lag),

2. that r (and therefore s) is constant over a short time ∆.

The function f (s) is known as a tuning curve.



Tuning curves

Commonly assumed mathematical forms for (1D) tuning curves:

• Gaussian r0 + rmax exp
[
− 1

2σ2
(x − xpref)

2
]

• (Thresholded) Ramp r0 + Θ(x − xthr) rmax ρ · (x − xthr)

• Cosine r0 + rmax cos(θ − θpref)

• Wrapped Gaussian r0 + rmax

∑
n

exp
[
− 1

2σ2
(θ − θpref − 2πn)2

]

• von Mises (“circular Gaussian”) r0 + rmax exp [κ cos(θ − θpref)]

• periodic (grid) f (s) = f1(sin(2πs/λ))



Decoding – the Cricket cercal system

ra(s) = rmax
a [cos(θ − θa)]+ = rmax

a [cT
av]+

cT
1c2 = 0

c3 = −c1

c4 = −c2

So, writing r̃a = ra/rmax
a :(

r̃1 − r̃3

r̃2 − r̃4

)
=

(
cT

1

cT
2

)
v

v = (c1c2)

(
r̃1 − r̃3

r̃2 − r̃4

)
= r̃1c1 − r̃3c3 + r̃2c2 − r̃4c4 =

∑
a

r̃aca

This is called population vector decoding.



Motor cortex (simplified)

Cosine tuning, randomly distributed preferred directions.
In general, population vector decoding works for

I cosine tuning
I cartesian or dense (tight) directions

But:
I is it optimal?
I does it generalise? (Gaussian tuning curves)
I how accurate is it?



Measuring the potential quality of a representation

Consider a (one dimensional) stimulus that takes on continuous values (e.g. angle).
I contrast
I orientation
I motion direction
I movement speed

Suppose a neuron fires n spikes in response to stimulus s according to some distribution

P(n|f (s)∆)

Given an observation of n, how well can we estimate s?



Cramér-Rao bound

Suppose the neural response can be described by a probability distribution P(r |s). The
Fisher information measures how this distribution changes with s:

J(s∗) = −
〈

d2 log P(r |s)

ds2

∣∣∣
s∗

〉
s∗

=

〈(d log P(r |s)

ds

∣∣∣
s∗

)2
〉

s∗

The Cramér-Rao bound states that for any N, any unbiased estimator ŝ({ni}) of s will have
the property that〈

(ŝ({ni})− s∗)2〉
ni |s∗
≥ 1

J(s∗)
.

Thus, Fisher Information gives a lower bound on the variance of any unbiased estimator.

[For estimators with bias b(s∗) = 〈ŝ({ni})− s∗〉 the bound is:〈
(ŝ({ni})− s∗)2

〉
ni |s∗

≥ (1+b′(s∗))2

J(s∗)
+ b2(s∗)]

The Fisher Information is the most common tool to analyse optimality in populations.



Fisher Info and tuning curves
n = r∆ + noise; r = f (s)⇒

J(s∗) =

〈(
d
ds

∣∣∣
s∗

log P(n|s)

)2〉
s∗

=

〈(
d

dr∆

∣∣∣
f (s∗)

log P(n|r∆)∆f ′(s∗)

)2〉
s∗

= Jnoise(r∆)∆2f ′(s∗)2
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Fisher info for Poisson neurons
For Poisson neurons

P(n|r∆) =
e−r∆

(r∆)n
n!

so

Jnoise[r∆] =

〈(
d

dr∆

∣∣∣
r∗∆

log P(n|r∆)

)2〉
s∗

=

〈(
d

dr∆

∣∣∣
r∗∆
− r∆ + n log r∆− log n!

)2〉
s∗

=

〈(
− 1 + n/r∗∆

)2〉
s∗

=

〈
(n − r∗∆)2

(r∗∆)2

〉
s∗

=
r∗∆

(r∗∆)2
=

1
r∗∆

[not surprising! r̂∗∆ = n and V [n] = r∗∆]

and, referred back to the stimulus value:

J[s∗] = f ′(s∗)2∆/f (s∗)
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Population Fisher Info

Fisher Informations for independent random variates add:

Jn(s) =

〈
− d2

ds2
log P(n|s)

〉
=

〈
− d2

ds2

∑
a

log P(na|s)

〉

=
∑

a

〈
− d2

ds2
log P(na|s)

〉
=
∑

a

Jna (s).

= ∆
∑

a

f ′a(s)2

fa(s)
[for Poisson cells]



Optimal tuning properties

A considerable amount of work has been done in recent years on finding optimal properties of
tuning curves for rate-based population codes. Here, we reproduce one such argument (from
Zhang and Sejnowski, 1999).

Consider a population of cells that codes the value of a D dimensional stimulus, s. Let the ath
cell emit r spikes in an interval τ with probability distribution that is conditionally independent
of the other cells (given s) and has the form

Pa(r | s, τ) = S(r , f a(s), τ).

Also let the tuning curve of the ath cell, f a(s), be circularly symmetric:

f a(s) = F · φ
(
(ξa)2) ; (ξa)2 =

D∑
i

(ξa
i )2; ξa

i =
si − ca

i

σ
,

where F is a maximal rate and the function φ is monotically decreasing. The parameters ca

and σ give the centre of the ath tuning curve and the (common) width.



Optimal tuning properties

Now, the (ij)th term in the FI matrix for the ath cell is (by definition)

Ja
ij (s) = E

[
∂

∂si
log Pa(r | s, τ)

∂

∂sj
log Pa(r | s, τ)

]
Applying the chain rule repeatedly, we find that

∂

∂si
log Pa(r | s, τ) =

1
S(r , f a(s), τ)

∂

∂si
S(r , f a(s), τ)

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)

∂

∂si
f a(s)

(where S(2) indicates differentiation with respect to the second argument)

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)
Fφ′

(
(ξa)2) ∂

∂si

D∑
i

(ξa
i )2

=
S(2)(r , f a(s), τ)

S(r , f a(s), τ)
Fφ′

(
(ξa)2) 2(si − ca

i )

(σa
i )2



Optimal tuning properties

So,

Ja
ij (s) = E

[(
S(2)(r , f a(s), τ)

S(r , f a(s), τ)

)2
]

4F 2 (φ′ ((ξa)2))2 (si − ca
i )(sj − ca

j )

σ4

= Aφ
(
(ξa)2, F , τ

) (si − ca
i )(sj − ca

j )

σ4

where the function Aφ does not depend explicitly on σ.



Optimal tuning properties
We assumed neurons were independent⇒ Fisher information adds. Approximate by integral
over the tuning curve centres, assuming uniform density η of neurons.

Jij (s) =
∑

a

Ja
ij (s)

≈
∫ +∞

−∞
dca

1 · · ·
∫ +∞

−∞
dca

D ηJa
ij (s)

=

∫ +∞

−∞
dca

1 · · ·
∫ +∞

−∞
dca

D ηAφ
(
(ξa)2, F , τ

) (si − ca
i )(sj − ca

j )

σ4

Change variables: ca
i → ξa

i

=

∫ +∞

−∞
σdξa

1 · · ·
∫ +∞

−∞
σdξa

D ηAφ
(
(ξa)2, F , τ

) ξa
i ξ

a
j

σ2

=
σD

σ2
η

∫ +∞

−∞
dξa

1 · · ·
∫ +∞

−∞
dξa

D Aφ
(
(ξa)2, F , τ

)
ξa

i ξ
a
j

Now, if i 6= j , integral is odd in both ξa
i and ξa

j , and thus vanishes. If i = j , then the integral
has some value D · Kφ(F , τ,D), independent of σ. Thus,

Jii = σD−2ηDKφ(F , τ,D)

and the total Fisher information is proportional to σD−2.



Optimal tuning properties
Thus optimal tuning width depends on the stimulus dimension through the interplay of two
effects:

slope: f ′(s) ∝ σ−1 ⇒ Ja(s) ∝ σ−2 per cell

number of cells: N(s) ∝ σD ⇒ J(s) ∝ σD−2 population

I D = 1

⇒ σ → 0 (although a lower limit is encountered when the tuning width falls below the
inter-cell spacing)

I D = 2

⇒ J independent of σ.
I D > 2

⇒ σ →∞ (actual limit set by valid stimuli).

I If circular symmetry is relaxed to allow different scales in each dimension for different
cells then solution is a Cartesian code (narrow in one dimension, wide in others).

I Single-bump constraint is essential to analysis. Fisher information cannot address
ambiguity between bumps.

I Single coded value – analysing multiple values or distributions is more complex.
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Signal-processing paradigms

1 filtering
2 (efficient) coding
3 feature detection



Feature detection and representation



Trained network models
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